[1]张丰,蒋润民,张超.癌变机制探讨[J].医学争鸣,2021,(02):48-58.[doi:10.13276/j.issn.1674-8913.2021.02.011]
 ZHANG Feng,JIANG Runmin,ZHANG Chao.On the mechanism of carcinogenesis[J].,2021,(02):48-58.[doi:10.13276/j.issn.1674-8913.2021.02.011]
点击复制

癌变机制探讨

参考文献/References:

[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Globalcancer statistics 2018: GLOBOCAN estimates of incidenceand mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2018, 68(6):394-424.
[2] FENG R M, ZONG Y N, CAO S M, et al. Current cancersituation in China: good or bad news from the 2018 GlobalCancer Statistics[J]. Cancer Commun (Lond), 2019,39(1):22.
[3] EWING J. The general pathological conception of cancer[J].Can Med Assoc J, 1935, 33(2):125-135.
[4] WILLIS R A. New names in tumour terminology[J]. Med J Aust, 1961, 48(1):441-443.
[5] LIU J S. The “life code”: a theory that unifies the human lifecycle and the origin of human tumors[J]. Semin Cancer Biol,2020, 60:380-397.
[6] STREITBERGER K J, LILAJ L, SCHRANK F, et al. Howtissue fluidity influences brain tumor progression[J]. ProcNatl Acad Sci U S A, 2020, 117(1):128-134.
[7] DAMADIAN R, ZANER K, HOR D, et al. Human tumorsdetected by nuclear magnetic resonance[J]. Proc Natl AcadSci U S A, 1974, 71(4):1471-1473.
[8] DAMADIAN R. Tumor detection by nuclear magneticresonance[J]. Science, 1971, 171(3976):1151-1153.
[9] KIRICUTA I C J R, SIMPLĂCEANU V. Tissue watercontent and nuclear magnetic resonance in normal andtumor tissues[J]. Cancer Res, 1975, 35(5):1164-1167.
[10] BARROSO E M, SMITS R W, BAKKER SCHUT T C, et al.Discrimination between oral cancer and healthy tissue basedon water content determined by Raman spectroscopy[J].Anal Chem, 2015, 87(4):2419-2426.
[11] BARROSO E M, SMITS R W, VAN LANSCHOT C G, etal. Water concentration analysis by Raman spectroscopy todetermine the location of the tumor border in oral cancersurgery[J]. Cancer Res, 2016, 76(20):5945-5953.
[12] AUNER G W, KOYA S K, HUANG C, et al. Applicationsof Raman spectroscopy in cancer diagnosis[J]. CancerMetastasis Rev, 2018, 37(4):691-717.
[13] SONNENSCHEIN C, SOTO A M. Over a century of cancerresearch: inconvenient truths and promising leads[J]. PLoSBiol, 2020, 18(4):e3000670.
[14] MARX J. Debate surges over the origins of genomic defectsin cancer[J]. Science, 2002, 297(5581):544-546.
[15] HANAHAN D, WEINBERG R A. Hallmarks of cancer: thenext generation[J]. Cell, 2011, 144(5):646-674.
[16] D U E S B E R G P , F A B A R I U S A , H E H L M A N N R .Aneuploidy, the primary cause of the multilateral genomicinstability of neoplastic and preneoplastic cells[J]. IUBMBLife, 2004, 56(2):65-81.
[17] RAJAGOPALAN H, LENGAUER C. Aneuploidy andcancer[J]. Nature, 2004, 432(7015):338-341.
[18] VARMUS H E. Viruses, genes, and cancer. I. The discoveryof cellular oncogenes and their role in neoplasia[J]. Cancer,1985, 55(10):2324-2328.
[19] LAND H, PARADA L F, WEINBERG R A. Cellularoncogenes and multistep carcinogenesis[J]. Science, 1983,222(4625):771-778.
[20] STEHELIN D, VARMUS H E, BISHOP J M, et al. DNArelated to the transforming gene(s) of avian sarcomaviruses is present in normal avian DNA[J]. Nature, 1976,260(5547):170-173.
[21] KNUDSON A G J R. Mutation and cancer: statistical studyof retinoblastoma[J]. Proc Natl Acad Sci U S A, 1971,68(4):820-823.
[22] WEINBERG R A. Tumor suppressor genes[J]. Science,1991, 254(5035):1138-1146.
[23] AMES B N, DURSTON W E, YAMASAKI E, et al.Carcinogens are mutagens: a simple test system combiningliver homogenates for activation and bacteria for detection[J].Proc Natl Acad Sci U S A, 1973, 70(8):2281-2285.
[24] WEINBERG R A. Oncogenes, antioncogenes, and themolecular bases of multistep carcinogenesis[J]. Cancer Res,1989, 49(14):3713-3721.
[25] FEARON E R, VOGELSTEIN B. A genetic model forcolorectal tumorigenesis[J]. Cell, 1990, 61(5):759-767.
[26] H A H N W C , C O U N T E R C M , L U N D B E R G A S ,et al. Creation of human tumour cells with definedgeneticelements[J]. Nature, 1999, 400(6743):464-468.
[27] HERZIG M, CHRISTOFORI G. Recent advances in cancerresearch: mouse models of tumorigenesis[J]. BiochimBiophys Acta, 2002, 1602(2):97-113.
[28] WEINSTEIN I B. Cancer. Addiction to oncogenes-theAchilles heal of cancer[J]. Science, 2002, 297(5578):63-64.
[29] M I T E L M A N F , M E R T E N S F , J O H A N S S O N B . Abreakpoint map of recurrent chromosomal rearrangements inhuman neoplasia[J]. Nat Genet, 1997, 15 (Spec):417-474.
[30] LI R, SONIK A, STINDL R, et al. Aneuploidy vs. genemutation hypothesis ofcancer: recent study claims mutationbut is found to support aneuploidy[J]. Proc Natl Acad SciU S A, 2000, 97(7):3236-3241.
[31] WOO R A, POON R Y. Activated oncogenes promoteand cooperate with chromosomal instability for neoplastictransformation[J]. Genes Dev, 2004, 18(11):1317-1330.
[32] DOLL R. An epidemiological perspective of the biology ofcancer[J]. Cancer Res, 1978, 38(11):3573-3583.
[33] VOGELSTEIN B, PAPADOPOULOS N, VELCULESCUV E, et al. Cancer genome landscapes[J]. Science, 2013,339(6127):1546-1558.
[34] S A I T O Y , K O Y A J , A R A K I M , e t a l . L a n d s c a p eand function of multiple mutations within individualoncogenes[J]. Nature, 2020, 582(7810):95-99.
[35] DAGOGO I, SHAW A T. Tumour heterogeneity andresistance to cancer therapies[J]. Nat Rev Clin Oncol, 2018,15(2):81-94.
[36] NANGALIA J, CAMPBELLl P J. Genome sequencingduring a Patient’s journey through cancer[J]. N Engl J Med,2019, 381(22):2145-2156.
[37] GERSTUNG M, JOLLY C, LESHCHINER I, et al. Theevolutionary history of 2 658 cancers[J]. Nature, 2020,578(7793):122-128.
[38] LI Y, ROBERTS N D, WALA J A, et al. Patterns of somaticstructural variation in human cancer genomes[J]. Nature,2020, 578(7793):112-121.
[39] DUESBERG P, RASNICK D. Aneuploidy, the somaticmutation that makes cancer a species of its own[J]. CellMotil Cytoskeleton, 2000, 47(2):81-107.
[40] MASER R S, DEPINHO R A. Connecting chromosomes,crisis, and cancer[J]. Science, 2002, 297(5581):565-569.
[41] NOWAK M A, KOMAROVA N L, SENGUPTA A, et al. Therole of chromosomal instability in tumor initiation[J]. ProcNatl Acad Sci U S A, 2002, 99(25):16226-16231.
[42] HAWKINS N J, TOMLINSON I, MEAGHER A, et al.Microsatellite-stable diploid carcinoma: a biologicallydistinct and aggressive subset of sporadic colorectalcancer[J]. Br J Cancer, 2001, 84(2):232-236.
[43] GHADIMI B M, SACKETT D L, DIFILIPPANTONIO M J,et al. Centrosome amplification and instability occursexclusively in aneuploid, but not in diploid colorectal cancercell lines, and correlates with numerical chromosomalaberrations[J]. Genes Chromosomes Cancer, 2000,27(2):183-190.
[44] AKAGI T, SASAI K, HANAFUSA H. Refractory nature ofnormal human diploid fibroblasts with respect to oncogenemediatedtransformation[J]. Proc Natl Acad Sci U S A, 2003,100(23):13567-13572.
[45] BEN-DAVID U, AMON A. Context is everything:aneuploidy in cancer[J]. Nat Rev Genet, 2020, 21(1):44-62.
[46] PREHN R T. Cancers beget mutations versus mutationsbeget cancers[J]. Cancer Res, 1994, 54(20):5296-5300.
[47] JAFFE L F. Epigenetic theories of cancer initiation[J]. AdvCancer Res, 2003, 90:209-230.
[48] KING T J, DIBERARDINO M A. Transplantation of nucleifrom the frog renal adenocarcinoma. I. development of tumornuclear-transplant embryos[J]. Ann N Y Acad Sci, 1965,126(1):115-126.
[49] MC K I N N E L L R G , D E G G I N S B A , L A B A T D D .Transplantation of pluripotential nuclei from triploid frogtumors[J]. Science, 1969, 165(3891):394-396.
[50] MINTZ B, ILLMENSEE K. Normal genetically mosaic miceproduced from malignant teratocarcinoma cells[J]. Proc NatlAcad Sci U S A, 1975, 72(9):3585-3589.
[51] ILLMENSEE K, MINTZ B. Totipotency and normaldifferentiation of single teratocarcinoma cells cloned byinjection into blastocysts[J]. Proc Natl Acad Sci U S A,1976, 73(2):549-553.
[52] HOWELL A N, SAGER R. Tumorigenicity and itssuppression in cybrids of mouse and Chinese hamster celllines[J]. Proc Natl Acad Sci U S A, 1978, 75(5):2358-2362.
[53] HARRIS H. Tumour suppression: putting on the brakes[J].Nature, 2004, 427(6971):201.
[54] GOOTWINE E, WEBB C G, SACHS L. Participationof myeloid leukaemic cells injected into embryos inhaematopoietic differentiation in adult mice[J]. Nature,1982, 299(5878):63-65.
[55] MCCULLOUGH K D, COLEMAN W B, RICKETTS S L, etal. Plasticity of the neoplastic phenotype in vivo is regulatedby epigenetic factors[J]. Proc Natl Acad Sci U S A, 1998,95(26):15333-15338.
[56] MAFFINI M V, SOTO A M, CALABRO J M, et al.The stroma as a crucial target in rat mammary glandcarcinogenesis[J]. J Cell Sci, 2004, 117(Pt8):1495-1502.
[57] SOTO A M, SONNENSCHEIN C. Emergentism as a default:cancer as a problem of tissue organization[J]. J Biosci, 2005,30(1):103-118.
[58] SONNENSCHEIN C, SOTO A M. Carcinogenesis explainedwithin the context of a theory of organisms[J]. Prog BiophysMol Biol, 2016, 122(1):70-76.
[59] SOTO A M, SONNENSCHEIN C. The tissue organizationfield theory of cancer: a testable replacement for the somaticmutation theory[J]. Bioessays, 2011, 33(9):332-340.
[60] SINGER S J, NICOLSON G L. The fluid mosaic modelof the structure of cell membranes[J]. Science, 1972,175(4023):720-731.
[61] NICOLSON G L. The fluid-mosaic model of membrane Structure: still relevant to understanding the structure,function and dynamics of biological membranes aftermore than 40 years[J]. Biochim Biophys Acta, 2014,1838(6):1451-1466.
[62] KOCH A L. How bacteria grow and divide in spite ofinternal hydrostatic pressure[J]. Can J Microbiol, 1985,31(12):1071-1084.
[63] KIERZKOWSKI D, ROUTIER-KIERZKOWSKA A L.Cellular basis of growth in plants: geometry matters[J]. CurrOpin Plant Biol, 2019, 47:56-63.
[64] OSAWA M, ERICKSON H P. Turgor pressure and possibleconstriction mechanisms in bacterial division[J]. FrontMicrobiol, 2018, 9:111.
[65] STEWART M P, HELENIUS J, TOYODA Y, et al.Hydrostatic pressure and the actomyosin cortex drive mitoticcell rounding[J]. Nature, 2011, 469(7329):226-230.
[66] FRIEDRICH B, MATSKEVICH I, LANG F. Cell volumeregulatory mechanisms[J]. Contrib Nephrol, 2006, 152:1-8.
[67] MÜL L E R M , S I E M S W, B U T T G E R E I T F , e t a l .Quantification of ATP-producing and consuming processesof Ehrlich ascites tumour cells[J]. Eur J Biochem, 1986,161(3):701-705.
[68] BERNSTEIN B W, BAMBURG J R. Actin-ATP hydrolysisis a major energy drain for neurons[J]. J Neurosci, 2003,23(1):1-6.
[69] 张丰. 细胞分裂和癌变机制新假说[J]. 医学争鸣, 2019,10(3):31-33.
[70] REIFF T R. A colloid osmotic model of macromolecularaggregation to explain tissue water loss in aging[J]. ExpGerontol, 1986, 21(4-5):267-276.
[71] REIFF T R. Water and aging[J]. Clin Geriatr Med, 1987,3(2):403-411.
[72] MAMMONE T, INGRASSIA M, GOYARTS E. Osmoticstress induces terminal differentiation in cultured normalhuman epidermal keratinocytes[J]. In Vitro Cell Dev BiolAnim, 2008, 44(5-6):135-139.
[73] D U C Y P , K A R S E N T Y G . G e n e t i c c o n t r o l o f c e l ldifferentiation in the skeleton[J]. Curr Opin Cell Biol, 1998,10(5):614-619.
[74] RAFII S, BUTLER J M, DING B S. Angiocrine functionsof organ-specific endothelial cells[J]. Nature, 2016,529(7586):316-325.
[75] MINC N, BOUDAOUD A, CHANG F. Mechanical forces offission yeast growth[J]. Curr Biol, 2014, 24(12):1436.
[76] SABLOWSKI R, CAMIER DOMELAS M. Interplay betweencell growth and cell cycle in plants[J]. J Exp Bot, 2014,65(10):2703-2714.
[77] ROJAS E R, HUANG K C. Regulation of microbial growthby turgor pressure[J]. Curr Opin Microbiol, 2018, 42:62-70.
[78] STEWART M P, HELENIUS J, TOYODA Y, et al.Hydrostatic pressure and the actomyosin cortex drive mitoticcell rounding[J]. Nature, 2011, 469(7329):226-230.
[79] ZLOTEK-ZLOTKIEWICZ E, MONNIER S, CAPPELLO G,et al. Optical volume and mass measurements show thatmammalian cells swell during mitosis[J]. J Cell Biol, 2015,211(4):765-774.
[80] CATTIN C J, DUGGELIN M, MARTINEZ-MARTIN D,et al. Mechanical control of mitotic progression insingle animal cells[J]. Proc Natl Acad Sci U S A, 2015,112(36):11258-11263.
[81] FOLKMAN J, MOSCONA A. Role of cell shape in growthcontrol[J]. Nature, 1978, 273(5561):345-349.
[82] HUANG S, CHEN C S, INGBER D E. Control of cyclin D1,p27(Kip1), and cell cycle progression in human capillaryendothelial cells by cell shape and cytoskeletal tension[J].Mol Biol Cell, 1998, 9(11):3179-3193.
[83] STREICHAN S J, HOEMER C R, SCHNEIDT T, et al.Spatial constraints control cell proliferation in tissues[J].Proc Natl Acad Sci U S A, 2014, 111(15):5586-5591.
[84] LEGOFF L, LECUIT T. Mechanical forces and growth inanimal tissues[J]. Cold Spring Harb Perspect Biol, 2015,8(3):a019232.
[85] GUDIPATY S A, LINDBLOM J, LOFTUS P D, et al.chondrogenesis under hypertonic conditions[J]. Cell Mol 109(5):167-189.
[113] ASCH B B, MEDINA D, BRINKLEY B R. Microtubulesand actin-containing filaments of normal, preneoplastic,and neoplastic mouse mammary epithelial cells[J]. CancerRes, 1979, 39(3):893-907.
[114] TANG J, NIU J W, XU D H, et al. Alteration of nuclearmatrix-intermediate filament system and differentialexpression of nuclear matrix proteins during humanhepatocarcinoma cell differentiation[J]. World JGastroenterol, 2007, 13(20):2791-2797.
[115] PRASAD S, SOLDATENKOV V A, SRINIVASARAO G,et al. Intermediate filament proteins during carcinogenesisand apoptosis (Review)[J]. Int J Oncol, 1999, 14(3):563-570.
[116] BANNASCH P, ZERBAN H, MAYER D. The cytoskeleton intumor cells[J]. Pathol Res Pract, 1982, 175(2-3):196-211.
[117] LIEBES L F, STARK R, NEVRLA D, et al. Purificationand characterization of actin from normal and chroniclymphocytic leukemia lymphocytes[J]. Cancer Res, 1983,43(10):4966-4973.
[118] RAO J, LI N. Microfilament actin remodeling as a potentialtarget for cancer drug development[J]. Curr Cancer DrugTargets, 2004, 4(4):345-354.
[119] BARROS J C, MARSHALL C J. Activation of eitherERK1/2 or ERK5 MAP kinase pathways can lead todisruption of the actin cytoskeleton[J]. J Cell Sci, 2005,118(Pt8):1663-1671.
[120] HALL A. The cytoskeleton and cancer[J]. CancerMetastasis Rev, 2009, 28(1-2):5-14.
[121] ZHANG L, ZHANG Z, GUO H, et al. Na+/K+-ATPasemediatedsignal transduction and Na+/K+-ATPase regulation[J].Fundam Clin Pharmacol, 2008, 22(6):615-621.
[122] LI Z, XIE Z. The Na+/K+-ATPase/Src complex andcardiotonic steroid-activated protein kinase cascades[J].Pflugers Arch, 2009, 457(3):635-644.
[123] NAGY I, LUSTYIK G, LUKACS G, et al. Correlation ofmalignancy with the intracellular Na+:K+ ratio in humanthyroid tumors[J]. Cancer Res, 1983, 43(11):5395-5402.
[124] NAGY I Z, LUSTYIK G, NAGY V Z, et al. IntracellularNa+:K+ ratios in human cancer cells as revealed by energydispersive X-ray microanalysis[J]. J Cell Biol, 1981,90(3):769-777.
[125] NAGY I, TOTH L, SZALLASI Z, et al. Energy-dispersive,bulk specimen X-ray microanalytical measurement of theintracellular Na+/K+ ratio in human laryngeal tumors[J]. JCancer Res Clin Oncol, 1987, 113(2):197-202.
[126] D’ALESSANDRO M, MORLEY S M, OGDEN P H, et al.Functional improvement of mutant keratin cells on additionof desmin: an alternative approach to gene therapy fordominant diseases[J]. Gene Ther, 2004, 11(16):1290-1295.
[127] CORNET M, LAMBERT I H, HOFFMANN E K. Relationbetween cytoskeleton, hypo-osmotic treatment and volumeregulation in Ehrlich ascites tumor cells[J]. J Membr Biol,1993, 131(1):55-66.
[128] DI PAOLA D, RAMPAKAKIS E, CHAN M K, et al.Increased origin activity in transformed versus normalcells: identification of novel protein players involved inDNA replication and cellular transformation[J]. NucleicAcids Res, 2010, 38(7):2314-2331.
[129] OPPENHEIM A, MARTIN R G. Initiation points forDNA replication in nontransformed and simian virus40-transformed BALB/c 3T3 cells[J]. J Virol, 1978,25(1):450-452.
[130] DI PAOLA D, PRICE G B, ZANNIS-HADJOPOULOS M.Differentially active origins of DNA replication in tumor versusnormal cells[J]. Cancer Res, 2006, 66(10):5094-5103.
[131] MARTIN R G, OPPENHEIM A. Initiation points forDNA replication in nontransformed and simian virus40-transformed Chinese hamster lung cells[J]. Cell, 1977,11(4):859-869.
[132] BUTEL J S, SOULE H R. Role of the simian virus 40 genea product in regulation of DNA synthesis in transformedcells[J]. J Virol, 1978, 26(3):584-594.
[133] TSAI H J, NELLIAT A R, CHOUDHURY M I, et al. Hypoosmotic-like stress underlies general cellular defects ofaneuploidy[J]. Nature, 2019, 570(7759):117-121.
[134] BORUAH D, DEB P, SRINIVAS V, et al. Morphometricstudy of nuclei and microvessels in gliomas and itscorrelation with grades[J]. Microvasc Res, 2014, 93:52-61.
[135] LIU J S. The dualistic origin of human tumors[J]. SeminCancer Biol, 2018, 53:1-16.
[136] SIKA-PAOTONU D, BETHWAITE P B, MCCREDIE M R,et al. Nucleolar grade but not Fuhrman grade is applicableto papillary renal cell carcinoma[J]. Am J Surg Pathol,2006, 30(9):1091-1096.
[137] MENDES PINTO I, RUBINSTEIN B, LI R. Force to divide:Biol (Noisy-le-grand), 2018, 64(3):56-61.
[89] Y A M A G U C H I Y , K L U G E N , O S T E R T A G W, e tal. Erythroid differentiation and commitment in raterythroleukemia cells with hypertonic culture conditions[J].Proc Natl Acad Sci U S A, 1981, 78(4):2325-2329.
[90] LANG F, LEPPLE-WIENHUES A, SZABÓ I, et al. Cellvolume in cell proliferation and apoptotic cell death[J].Contrib Nephrol, 1998, 123:158-168.
[91] HUANG C, LI Y, WANG H. The observation of highhypotonicity manipulating cell division[J]. Heliyon, 2019,5(8):e02095
[92] CHEFFINGS T H, BURROUGHS N J, BALASUBRAMANIANM K. Actomyosin ring formation and tension generationi n e u k a r y o t i c c y t o k i n e s i s [ J ] . C u r r B i o l , 2 0 1 6 ,26(15):R719-R737.
[93] BAATOUT S, CHATELAIN B, STAQUET P, et al.Inhibition of actin polymerization by cytochalasin B inducespolyploidization and increases the number of nucleolarorganizer regions in human megakaryocyte cell lines[J].Anticancer Res, 1998, 18(1A):459-464.
[94] PASANTES-MORALES H, LEZAMA R A, RAMOSMANDUJANOG. Tyrosine kinases and osmolyte fluxesduring hyposmotic swelling[J]. Acta Physiol (Oxf), 2006,187(1-2):93-102.
[95] LEZAMA R, DIAZ-TWLLEZ A, RAMOS-MANDUJANO G,et al. Epidermal growth factor receptor is a common elementin the signaling pathways activated by cell volume changesin isosmotic, hyposmotic or hyperosmotic conditions[J].Neurochem Res, 2005, 30(12):1589-1597.
[96] S C H L I E S S F , R E I N E H R R , H A U S S I N G E R D .Osmosensing and signaling in the regulation of mammaliancell function[J]. FEBS J, 2007, 274(22):5799-5803.
[97] HOFFMANN E K, LAMBERT I H, PEDERSEN S F.Physiology of cell volume regulation in vertebrates[J].Physiol Rev, 2009, 89(1):193-277.
[98] MATTHEWS H K, GANGULI S, PLAK K, et al. Oncogenicsignaling alters cell shape and mechanics to facilitate celldivision under confinement[J]. Dev Cell, 2020, 52(5):563-573.
[99] CONE C D J R. Variation of the transmembrane potentiallevel as a basic mechanism of mitosis control[J]. Oncology,1970, 24(6):438-470.
[100] YANG M, BRACKENBURY W J. Membrane potential andcancer progression[J]. Front Physiol, 2013, 4:185.
[101] CONE C D J R, CONE C M. Induction of mitosis inmature neurons in central nervous system by sustaineddepolarization[J]. Science, 1976, 192(4235):155-158.
[102] 张丰, 蒋润民, 王贺, 等. 渗透压失控可能致癌[J]. 医学争鸣, 2020, 11(3):63-67.
[103] ZHANG F, JIANG R M, ZHANG C. Uncontrolledintracellular osmotic pressure leads to cancer[J].Hypothesis, 2020. Online ahead of print. DOI:10.20944/preprints202006.0270.v1.
[104] ROOP D R, KRIEG T M, MEHREL T, et al. Transcriptionalcontrol of high molecular weight keratin gene expressionin multistage mouse skin carcinogenesis[J]. Cancer Res,1988, 48(11):3245-3252.
[105] POLLACK R, OSBORN M, WEBER K. Patterns oforganization of actin and myosin in normal and transformedcultured cells[J]. Proc Natl Acad Sci U S A, 1975,72(3):994-998.
[106] RUNGGER-BRANDLE E, GABBIANI G. The role ofcytoskeletal and cytocontractile elements in pathologicprocesses[J]. Am J Pathol, 1983, 110(3):361-392.
[107] FRIEDMAN E, VERDERAME M, WINAWER S, et al.Actin cytoskeletal organization loss in the benign-tomalignanttumor transition in cultured human colonicepithelial cells[J]. Cancer Res, 1984, 44(7):3040-3050.
[108] PAWLAK G, HELFMAN D M. Cytoskeletal changes in celltransformation and tumorigenesis[J]. Curr Opin Genet Dev,2001, 11(1):41-47.
[109] SWAMINATHAN V, MYTHREYE K, O’BRIEN E T, et al.Mechanical stiffness grades metastatic potential in patienttumor cells and in cancer cell lines[J]. Cancer Res, 2011,71(15):5075-5080.
[110] FRIEDMAN E, VERDERAME M, LIPKIN M, et al.Altered actin cytoskeletal patterns in two premalignantstages in human colon carcinoma development[J]. CancerRes, 1985, 45(7):3236-3242.
[111] HAGHPARAST S M, KIHARA T, SHIMIZU Y, et al.Actin-based biomechanical features of suspended normaland cancer cells[J]. J Biosci Bioeng, 2013, 116(3):380-385.
[112] ALIBERT C, GOUD B, MANNEVILLE J B. Are cancercells really softer than normal cells?[J]. Biol Cell, 2017,109(5):167-189.
[113] ASCH B B, MEDINA D, BRINKLEY B R. Microtubulesand actin-containing filaments of normal, preneoplastic,and neoplastic mouse mammary epithelial cells[J]. CancerRes, 1979, 39(3):893-907.
[114] TANG J, NIU J W, XU D H, et al. Alteration of nuclearmatrix-intermediate filament system and differentialexpression of nuclear matrix proteins during humanhepatocarcinoma cell differentiation[J]. World JGastroenterol, 2007, 13(20):2791-2797.
[115] PRASAD S, SOLDATENKOV V A, SRINIVASARAO G,et al. Intermediate filament proteins during carcinogenesisand apoptosis (Review)[J]. Int J Oncol, 1999, 14(3):563-570.
[116] BANNASCH P, ZERBAN H, MAYER D. The cytoskeleton intumor cells[J]. Pathol Res Pract, 1982, 175(2-3):196-211.
[117] LIEBES L F, STARK R, NEVRLA D, et al. Purificationand characterization of actin from normal and chroniclymphocytic leukemia lymphocytes[J]. Cancer Res, 1983,43(10):4966-4973.
[118] RAO J, LI N. Microfilament actin remodeling as a potentialtarget for cancer drug development[J]. Curr Cancer DrugTargets, 2004, 4(4):345-354.
[119] BARROS J C, MARSHALL C J. Activation of eitherERK1/2 or ERK5 MAP kinase pathways can lead todisruption of the actin cytoskeleton[J]. J Cell Sci, 2005,118(Pt8):1663-1671.
[120] HALL A. The cytoskeleton and cancer[J]. CancerMetastasis Rev, 2009, 28(1-2):5-14.
[121] ZHANG L, ZHANG Z, GUO H, et al. Na+/K+-ATPasemediatedsignal transduction and Na+/K+-ATPase regulation[J].Fundam Clin Pharmacol, 2008, 22(6):615-621.
[122] LI Z, XIE Z. The Na+/K+-ATPase/Src complex andcardiotonic steroid-activated protein kinase cascades[J].Pflugers Arch, 2009, 457(3):635-644.
[123] NAGY I, LUSTYIK G, LUKACS G, et al. Correlation ofmalignancy with the intracellular Na+:K+ ratio in humanthyroid tumors[J]. Cancer Res, 1983, 43(11):5395-5402.
[124] NAGY I Z, LUSTYIK G, NAGY V Z, et al. IntracellularNa+:K+ ratios in human cancer cells as revealed by energydispersive X-ray microanalysis[J]. J Cell Biol, 1981,90(3):769-777.
[125] NAGY I, TOTH L, SZALLASI Z, et al. Energy-dispersive,bulk specimen X-ray microanalytical measurement of theintracellular Na+/K+ ratio in human laryngeal tumors[J]. JCancer Res Clin Oncol, 1987, 113(2):197-202.
[126] D’ALESSANDRO M, MORLEY S M, OGDEN P H, et al.Functional improvement of mutant keratin cells on additionof desmin: an alternative approach to gene therapy fordominant diseases[J]. Gene Ther, 2004, 11(16):1290-1295.
[127] CORNET M, LAMBERT I H, HOFFMANN E K. Relationbetween cytoskeleton, hypo-osmotic treatment and volumeregulation in Ehrlich ascites tumor cells[J]. J Membr Biol,1993, 131(1):55-66.
[128] DI PAOLA D, RAMPAKAKIS E, CHAN M K, et al.Increased origin activity in transformed versus normalcells: identification of novel protein players involved inDNA replication and cellular transformation[J]. NucleicAcids Res, 2010, 38(7):2314-2331.
[129] OPPENHEIM A, MARTIN R G. Initiation points forDNA replication in nontransformed and simian virus40-transformed BALB/c 3T3 cells[J]. J Virol, 1978,25(1):450-452.
[130] DI PAOLA D, PRICE G B, ZANNIS-HADJOPOULOS M.Differentially active origins of DNA replication in tumor versusnormal cells[J]. Cancer Res, 2006, 66(10):5094-5103.
[131] MARTIN R G, OPPENHEIM A. Initiation points forDNA replication in nontransformed and simian virus40-transformed Chinese hamster lung cells[J]. Cell, 1977,11(4):859-869.
[132] BUTEL J S, SOULE H R. Role of the simian virus 40 genea product in regulation of DNA synthesis in transformedcells[J]. J Virol, 1978, 26(3):584-594.
[133] TSAI H J, NELLIAT A R, CHOUDHURY M I, et al. Hypoosmotic-like stress underlies general cellular defects ofaneuploidy[J]. Nature, 2019, 570(7759):117-121.
[134] BORUAH D, DEB P, SRINIVAS V, et al. Morphometricstudy of nuclei and microvessels in gliomas and itscorrelation with grades[J]. Microvasc Res, 2014, 93:52-61.
[135] LIU J S. The dualistic origin of human tumors[J]. SeminCancer Biol, 2018, 53:1-16.
[136] SIKA-PAOTONU D, BETHWAITE P B, MCCREDIE M R,et al. Nucleolar grade but not Fuhrman grade is applicableto papillary renal cell carcinoma[J]. Am J Surg Pathol,2006, 30(9):1091-1096.
[137] MENDES PINTO I, RUBINSTEIN B, LI R. Force to divide:structural and mechanical requirements for actomyosin ringcontraction[J]. Biophys J, 2013, 105(3):547-554.
[138] MARTINS R P, FINAN J D, GUILAK F, et al. Mechanicalregulation of nuclear structure and function[J]. Annu RevBiomed Eng, 2012, 14:431-455.
[139] LIMA A F, MAY G, DIAZ-COLUNGA J, et al. Osmoticmodulation of chromatin impacts on efficiency and kineticsof cell fate modulation[J]. Sci Rep, 2018, 8(1):7210.
[140] FINAN J D, LEDDY H A, GUILAK F. Osmotic stressalters chromatin condensation and nucleocytoplasmictransport[J]. Biochem Biophys Res Commun, 2011,408(2):230-235.
[141] FINAN J D, GUILAK F. The effects of osmotic stress onthe structure and function of the cell nucleus[J]. J CellBiochem, 2010, 109(3):460-467.
[142] FINAN J D, CHALUT K J, WAX A, et al. Nonlinearosmotic properties of the cell nucleus[J]. Ann Biomed Eng,2009, 37(3):477-491.
[143] SANKARAN J, UZER G, VAN WIJNEN A J, et al.Gene regulation through dynamic actin control ofnuclear structure[J]. Exp Biol Med (Maywood), 2019,244(15):1345-1353.
[144] RESNITZKY P, REICHMAN N. Osmotic fragility ofperipheral blood lymphocytes in chronic lymphaticleukemia and malignant lymphoma[J]. Blood, 1978,51(4):645-651.
[145] KARALIAS N, INGLESSIS N, KARABETSOS Y, et al.Osmotic fragility of peripheral blood lymphocytes in somelymphoproliferative disorders[J]. Acta Haematol, 1984,72(2):138-139.
[146] RAJDEV L. Treatment options for surgically resectablegastric cancer[J]. Curr Treat Options Oncol, 2010, 11(1-2):14-23.
[147] SHIOZAKI A, ICHIKAWA D, KOSUGA T, et al.Regulation of osmolality for cancer treatment[J]. J PhysiolSci, 2017, 67(3):353-360.
[148] SHIOZAKI A, ICHIKAWA D, TAKEMOTO K, etal. Efficacy of a hypotonic treatment for peritonealdissemination from gastric cancer cells: an in vivoevaluation[J]. Biomed Res Int, 2014, 2014:707089.
[149] KOCH A L. The exocytoskeleton[J]. J Mol MicrobiolBiotechnol, 2006, 11(3-5):115-125.
[150] GKOUNTELA S, CASTRO-GINER F, SZCZERBA B M,et al. Circulating tumor cell clustering shapes DNAmethylation to enable metastasis seeding[J]. Cell, 2019,176(1-2):98-112.
[151] PLATZ E A, YEGNASUBRAMANIAN S, LIU J O, et al. Anovel two-stage, transdisciplinary study identifies digoxinas a possible drug for prostate cancer treatment[J]. CancerDiscov, 2011, 1(1):68-77.
[152] SIMPSON C D, MAWJI I A, ANYIWE K, et al. Inhibitionof the sodium potassium adenosine triphosphatase pumpsensitizes cancer cells to anoikis and prevents distanttumor formation[J]. Cancer Res, 2009, 69(7):2739-2747.
[153] Mijatovic T, Dufrasne F, Kiss R. Na+/K+-ATPase andcancer[J]. Pharm Pat Anal, 2012, 1:91-106
[154] DURLACHER C T, CHOW K, CHEN X W, et al.Targeting Na+/K+-translocating adenosine triphosphatasein cancer treatment[J]. Clin Exp Pharmacol Physiol, 2015,42(5):427-443.
[155] PRASSAS I, DIAMANDIS E P. Novel therapeuticapplications of cardiac glycosides[J]. Nat Rev Drug Discov,2008, 7(11):926-935.
[156] RISINGER A L, DU L. Targeting and extending theeukaryotic druggable genome with natural products:cytoskeletal targets of natural products[J]. Nat Prod Rep,2020, 37(5):634-652.
[157] TRENDOWSKI M. Exploiting the cytoskeletal filaments ofneoplastic cells to potentiate a novel therapeutic approach[J].Biochim Biophys Acta, 2014, 1846(2):599-616.
[158] HAIDER K, RAHAMAN S, YAR M S, et al. Tubulininhibitors as novel anticancer agents: an overview onpatents (2013-2018)[J]. Expert Opin Ther Pat, 2019,29(8):623-641.
[159] NURNBERG A, KOLLMANNSPERGER A, GROSSER. Pharmacological inhibition of actin assembly to targettumor cell motility[J]. Rev Physiol Biochem Pharmacol,2014, 166:23-42.
[160] SIMA P, VETVICKA V. Bioactive substances with antineoplasticefficacy from marine invertebrates: porifera andcoelenterata[J]. World J Clin Oncol, 2011, 2(11):355-361.
[161] SAITO S Y. Toxins affecting actin filaments andmicrotubules[J]. Prog Mol Subcell Biol, 2009, 46:187-219.
[162] TISCHER J, GERGELY F. Anti-mitotic therapies incancer[J]. J Cell Biol, 2019, 218(1):10-11.

相似文献/References:

[1]柳璐,姚文龙,祝畅,等.Cdh1小干扰RNA载体的构建及鉴定[J].医学争鸣,2007,(17):1544.
 LIU Lu,YAO Wen Long,ZHU Chang,et al.Construction and identification of Cdh1 small interfering RNA eukaryotic vector[J].,2007,(02):1544.
[2]王文清,黄高昇,梁蓉,等.醋酸棉酚对白血病HL60细胞凋亡及分化的影响[J].医学争鸣,2006,(08):733.
 WANG Wen Qing,HUANG Gao Sheng,LIANG Rong,et al.Effects of gossypol acetic acid on apoptosis and differentiation in leukemia HL60 cells[J].,2006,(02):733.
[3]张 丰.细胞分裂和癌变机制新假说[J].医学争鸣,2019,(03):31.[doi:10.13276/j.issn.1674-8913.2019.03.007]
 ZHANG Feng.A new hypothesis about cell division and carcinogenesis[J].,2019,(02):31.[doi:10.13276/j.issn.1674-8913.2019.03.007]
[4]张 丰,蒋润民,王 贺,等.渗透压失控可能致癌[J].医学争鸣,2020,(03):63.[doi:10.13276/j.issn.1674-8913.2020.03.015]
 ZHANG Feng,JIANG Runmin,WANG He,et al.Uncontyollable of osmotic pressure may cause cancer[J].,2020,(02):63.[doi:10.13276/j.issn.1674-8913.2020.03.015]
[5]张丰,蒋润民,张超.癌变机制探讨[J].医学争鸣,2021,(预出版):1.[doi:10.20944/preprints202006.0270.v1]
 ZHANG Feng,JIANG Runmin,ZHANG Chao.On the mechanism of carcinogenesis[J].,2021,(02):1.[doi:10.20944/preprints202006.0270.v1]

备注/Memo

基金项目:国家自然科学基金(81572631);肿瘤生物学国家重点实验室自主课题(CBSKL2019ZZ28);陕西省社会发展科技攻关项目(2016SF-064)
作者简介:张 丰。博士,副教授。研究方向:癌变机制研究。Tel:13991908775,E-mail:zhf1975@fmmu.edu.cn

更新日期/Last Update: 2021-05-01